Share Email Print

Proceedings Paper

A simulator for surgery training: optimal sensory stimuli in a bone pinning simulation
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Currently available low cost haptic devices allow inexpensive surgical training with no risk to patients. Major drawbacks of lower cost devices include limited maximum feedback force and the incapability to expose occurring moments. Aim of this work was the design and implementation of a surgical simulator that allows the evaluation of multi-sensory stimuli in order to overcome the occurring drawbacks. The simulator was built following a modular architecture to allow flexible combinations and thorough evaluation of different multi-sensory feedback modules. A Kirschner-Wire (K-Wire) tibial fracture fixation procedure was defined and implemented as a first test scenario. A set of computational metrics has been derived from the clinical requirements of the task to objectively assess the trainees performance during simulation. Sensory feedback modules for haptic and visual feedback have been developed, each in a basic and additionally in an enhanced form. First tests have shown that specific visual concepts can overcome some of the drawbacks coming along with low cost haptic devices. The simulator, the metrics and the surgery scenario together represent an important step towards a better understanding of the perception of multi-sensory feedback in complex surgical training tasks. Field studies on top of the architecture can open the way to risk-less and inexpensive surgical simulations that can keep up with traditional surgical training.

Paper Details

Date Published: 17 March 2008
PDF: 10 pages
Proc. SPIE 6918, Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling, 69181O (17 March 2008); doi: 10.1117/12.770726
Show Author Affiliations
Stefan Daenzer, Stefan Daenzer - IT Consulting (Germany)
Klaus Fritzsche, German Cancer Research Ctr. (Germany)

Published in SPIE Proceedings Vol. 6918:
Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling
Michael I. Miga; Kevin Robert Cleary, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?