Share Email Print
cover

Proceedings Paper

A parametric study of guided mechanical waves in windshields: a three-layer laminated structure
Author(s): Shihong Huo; Henrique Reis
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A parametric study of guided mechanical wave propagation in laminated safety glass (windshields) is presented. Laminated safety glass is considered a three layered structure modeled as a viscoelastic layer bonded by two elastic layers, i.e., glass plates. The interface between each of the two bonded layers is modeled as a bed of longitudinal and shear linear springs. The spring constants are estimated using surface analysis in conjunction with atomic force microscopy and profilometer analysis. Attenuation due to material absorption of the viscoelastic interlayer is considered while calculating the dispersion curves for the system. The dependence of phase and energy velocities, attenuation, and resonance frequencies, upon variations of material properties (e.g., modulus of elasticity, Poisson's ratio, and longitudinal and shear ultrasonic material attenuation) is discussed. The relative physical dimensions (i.e., layer thickness variation of each layer) influence upon guided wave behavior is also presented and discussed. Results are applicable to any similar three-layer laminated structure.

Paper Details

Date Published: 8 April 2008
PDF: 12 pages
Proc. SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, 69322O (8 April 2008); doi: 10.1117/12.768005
Show Author Affiliations
Shihong Huo, Univ. of Illinois at Urbana-Champaign (United States)
Henrique Reis, Univ. of Illinois at Urbana-Champaign (United States)


Published in SPIE Proceedings Vol. 6932:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top