
Proceedings Paper
An object-based classification approach for high-spatial resolution imageryFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
With the recent availability of commercial high resolution remote sensing multispectral imagery from sensors such as
IKONOS and QuickBird, we can't get the accuracy of land-cover classification expected using pixel-based approach. In
this paper, we bring about object-based approach combined with the nearest neighbor to classify the QuickBird image of
LianYungang city. Firstly, the image is segmented into object feature, we make the shape feature and contextual relation
feature join the new feature space which is used to classify. And then we compare the classification of object-based
approach accuracy with the nearest neighbor method of classification result, we can draw a conclusion that the method of
classification in this paper can recognize geo-types much better. And the overall accuracy is 92.19%; the coefficient of
Kappa is 0.8835. Salt and pepper effect is decreased effectively. The result indicates that the approach of land-cover
classification combined object features with the nearest neighbor approach supplies another new technique for interpreting
high resolution remote sensed imagery.
Paper Details
Date Published: 26 July 2007
PDF: 9 pages
Proc. SPIE 6752, Geoinformatics 2007: Remotely Sensed Data and Information, 67523O (26 July 2007); doi: 10.1117/12.761260
Published in SPIE Proceedings Vol. 6752:
Geoinformatics 2007: Remotely Sensed Data and Information
Weimin Ju; Shuhe Zhao, Editor(s)
PDF: 9 pages
Proc. SPIE 6752, Geoinformatics 2007: Remotely Sensed Data and Information, 67523O (26 July 2007); doi: 10.1117/12.761260
Show Author Affiliations
Published in SPIE Proceedings Vol. 6752:
Geoinformatics 2007: Remotely Sensed Data and Information
Weimin Ju; Shuhe Zhao, Editor(s)
© SPIE. Terms of Use
