Share Email Print

Proceedings Paper

SBS based slow-light performance comparison of 10-Gb/s NRZ, PSBT and DPSK signals
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We have demonstrated error-free operations of slow-light via stimulated Brillouin scattering (SBS) in optical fiber for 10-Gb/s signals with different modulation formats, including non-return-to-zero (NRZ), phase-shaped binary transmission (PSBT) and differential phase-shift-keying (DPSK). By directly modulating the pump laser diode (LD) using current noise source, the SBS gain bandwidth and profile can be simply controlled by the peak-to-peak value and power density distribution of the current noise. Super-Gaussian noise modulation of the Brillouin pump LD allows a flat-top and sharp-edge SBS gain spectrum, which can reduce slow-light induced distortion in case of 10-Gb/s NRZ and PSBT signals. For the 10-Gb/s NRZ signal, the error-free slow-light operation has been achieved for the fist time and the corresponding maximal delay-time with error-free operation is 35 ps. Then we propose the PSBT format to minimize distortions resulting from SBS filtering effect and dispersion accompanied with slow light owing to its high spectral efficiency and strong dispersion tolerance. The maximal delay of 51 ps with error-free operation has been achieved. Furthermore, the DPSK format is directly demodulated through a Gaussian-shaped SBS gain, which is achieved using Gaussian-noise modulation of the Brillouin pump. The maximal error-free time delay after demodulation of a 10-Gb/s DPSK signal is as high as 81.5 ps, which is the best demonstrated result for 10-Gb/s slow-light.

Paper Details

Date Published: 19 November 2007
PDF: 9 pages
Proc. SPIE 6783, Optical Transmission, Switching, and Subsystems V, 67830J (19 November 2007); doi: 10.1117/12.743699
Show Author Affiliations
Lilin Yi, GET/Telecom Paris (France)
Shanghai Jiao Tong Univ. (China)
Yves Jaouën, GET/Telecom Paris (France)
Weisheng Hu, Shanghai Jiao Tong Univ. (China)
Yikai Su, Shanghai Jiao Tong Univ. (China)
Philippe Gallion, GET/Telecom Paris (France)

Published in SPIE Proceedings Vol. 6783:
Optical Transmission, Switching, and Subsystems V
Dominique Chiaroni; Wanyi Gu; Ken-ichi Kitayama; Chang-Soo Park, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?