
Proceedings Paper
Hyperspectral clutter, phenomenology, and detection algorithmsFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Physical growth processes give rise to a number of hyperspectral vegetation background clutter properties which degrade
the ability to detect targets in such backgrounds. In order to gain insight into this complex problem a novel three-fold
method is proposed: the first appeals to growth processes to produce generative models of the background clutter; the
second examines the phenomenology of these models and compares it to real data; and the third devises new anomaly
detectors to mitigate the effects of these background clutter properties. Studies of model cellular automata are reported
here. These models aim to replicate the local conditions necessary for successful growth of the vegetation species and as
a result produce spatial correlations that match real vegetation. Non-competitive and competitive growth models, in
particular, are studied and produce hyperspectral images through the use of Cameosim. In general, no degrading effects
of using an enhanced spectral library were observed suggesting that the dominant factor in reducing anomaly detectors
effectiveness is the spatial inhomogeneity of vegetation abundances. In addition, evidence for several important
properties of the hyperspectral background is also reported. These support the conclusion that vegetation background
clutter distributions are non-Gaussian. Insight gleaned from these studies has been used to develop many new improved
anomaly detectors and their results are also reported and bench-marked against existing algorithms.
Paper Details
Date Published: 24 October 2007
PDF: 11 pages
Proc. SPIE 6748, Image and Signal Processing for Remote Sensing XIII, 67480F (24 October 2007); doi: 10.1117/12.738024
Published in SPIE Proceedings Vol. 6748:
Image and Signal Processing for Remote Sensing XIII
Lorenzo Bruzzone, Editor(s)
PDF: 11 pages
Proc. SPIE 6748, Image and Signal Processing for Remote Sensing XIII, 67480F (24 October 2007); doi: 10.1117/12.738024
Show Author Affiliations
C. A. Steer, Waterfall Solutions Ltd. (United Kingdom)
M. Bernhardt, Waterfall Solutions Ltd. (United Kingdom)
Published in SPIE Proceedings Vol. 6748:
Image and Signal Processing for Remote Sensing XIII
Lorenzo Bruzzone, Editor(s)
© SPIE. Terms of Use
