Share Email Print

Proceedings Paper

Optical spatial heterodyne interferometric Fourier transform technique (OSHIFT) and a resulting interferometer
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This article reports on the novel patent pending Optical Spatial Heterodyne Interferometric Fourier Transform Technique (the OSHIFT technique), the resulting interferometer also referred to as OSHIFT, and its preliminary results. OSHIFT was borne out of the following requirements: wavefront sensitivity on the order of 1/100 waves, high-frequency wavefront spatial sampling, snapshot 100Hz operation, and the ability to deal with discontinuous wavefronts. The first two capabilities lend themselves to the use of traditional interferometric techniques; however, the last two prove difficult for standard techniques, e.g., phase shifting interferometry tends to take a time sequence of images and most interferometers require estimation of a center fringe across wavefront discontinuities. OSHIFT overcomes these challenges by employing a spatial heterodyning concept in the Fourier (image) plane of the optic-under-test. This concept, the mathematical theory, an autocorrelation view of operation, and the design with results of OSHIFT will be discussed. Also discussed will be future concepts such as a sensor that could interrogate an entire imaging system as well as a methodology to create innovative imaging systems that encode wavefront information onto the image. Certain techniques and systems described in this paper are the subject of a patent application currently pending in the United States Patent Office.

Paper Details

Date Published: 27 September 2007
PDF: 12 pages
Proc. SPIE 6711, Advanced Wavefront Control: Methods, Devices, and Applications V, 671104 (27 September 2007); doi: 10.1117/12.732154
Show Author Affiliations
James A. Georges III, General Dynamics Advanced Information Systems (United States)

Published in SPIE Proceedings Vol. 6711:
Advanced Wavefront Control: Methods, Devices, and Applications V
Richard A. Carreras; John D. Gonglewski; Troy A. Rhoadarmer, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?