Share Email Print

Proceedings Paper

Self-referencing techniques in photonics sensors and multiplexing
Author(s): Carmen Vázquez; Julio Montalvo; David S. Montero; Pedro C. Lallana
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A short review of self-reference techniques for remote fiber-optic intensity sensors and possible integration in multiplexing sensor networks is reported. Special focus is given to developments on radio-frequency (RF) source modulation techniques in interferometric configurations operating under incoherent regime. Experimental results on ring resonator (RR) configurations in transmission and reflection modes are included. Sensitivity, optimum insertion losses and robustness to intensity error fluctuations are reported. Sensors are interrogated at two sub carrier frequencies having a high rejection of interference from laser source intensity fluctuations and loss in the fiber lead. Dependence on source coherence is also analysed. Scalable self-referencing sensor networks with low insertion losses implemented in Coarse Wavelength Division Multiplexing (CWDM) technology are reported. The possibility of remote self-referenced measurements using a full-duplex fiber down-lead tenths of kilometers long with no need for optical amplification is also described. Fiber Bragg gratings (FBG) are used in the reflection configuration, thus increasing the sensitivity of the optical transducers. Low-cost off-the-shelf devices in CWDM and DWDM technology can be used to implement and scale the network. Applications to specific photonic sensors are also envisaged and these techniques can be used in networks of microfiber loop resonators, being the microfiber loop the sensing element itself.

Paper Details

Date Published: 12 June 2007
PDF: 11 pages
Proc. SPIE 6593, Photonic Materials, Devices, and Applications II, 65931X (12 June 2007); doi: 10.1117/12.723743
Show Author Affiliations
Carmen Vázquez, Carlos III Univ. of Madrid (Spain)
Julio Montalvo, Carlos III Univ. of Madrid (Spain)
David S. Montero, Carlos III Univ. of Madrid (Spain)
Pedro C. Lallana, Carlos III Univ. of Madrid (Spain)

Published in SPIE Proceedings Vol. 6593:
Photonic Materials, Devices, and Applications II
Ali Serpengüzel; Gonçal Badenes; Giancarlo C. Righini, Editor(s)

© SPIE. Terms of Use
Back to Top