Share Email Print

Proceedings Paper

Wide-area hyperspectral chemical plume detection using parallel random sampling
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a multistage anomaly detection algorithm suite and suggest its application to chemical plume detection using hyperspectral (HS) imagery. This approach is proposed to handle underlying difficulties (e.g., plume shape/scale uncertainties) facing the development of autonomous anomaly detection algorithms. The approach features four stages: (i) scene random sampling, which does not require secondary information (shape and scale) about potential effluent plumes; (ii) anomaly detection; (iii) parallel processes, which are introduced to mitigate the inclusion by chance of potential plume samples into clutter background classes; and (iv) fusion of results. The probabilities of taking plume samples by chance within the parallel processes are modeled by the binomial distribution family, which can be used to assist on tradeoff decisions. Since this approach relies on the effectiveness of its core anomaly detection technique, we present a compact test statistic for anomaly detection, which is based on an asymmetric hypothesis test. This anomaly detection technique has shown to preserve meaningful detections (genuine anomalies in the scene) while significantly reducing the number of meaningless detections (transitions of background regions). Results of a proof of principle experiment are presented using this approach to test real HS background imagery with synthetically embedded gas plumes. Initial results are encouraging.

Paper Details

Date Published: 26 April 2007
PDF: 10 pages
Proc. SPIE 6554, Chemical and Biological Sensing VIII, 65540A (26 April 2007); doi: 10.1117/12.720905
Show Author Affiliations
Dalton Rosario, Army Research Lab. (United States)
John Romano, Army Research, Development and Engineering Ctr. (United States)

Published in SPIE Proceedings Vol. 6554:
Chemical and Biological Sensing VIII
Augustus W. Fountain III, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?