Share Email Print

Proceedings Paper

Texture classification of normal tissues in computed tomography using Gabor filters
Author(s): Lucia Dettori; Alia Bashir; Julie Hasemann
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The research presented in this article is aimed at developing an automated imaging system for classification of normal tissues in medical images obtained from Computed Tomography (CT) scans. Texture features based on a bank of Gabor filters are used to classify the following tissues of interests: liver, spleen, kidney, aorta, trabecular bone, lung, muscle, IP fat, and SQ fat. The approach consists of three steps: convolution of the regions of interest with a bank of 32 Gabor filters (4 frequencies and 8 orientations), extraction of two Gabor texture features per filter (mean and standard deviation), and creation of a Classification and Regression Tree-based classifier that automatically identifies the various tissues. The data set used consists of approximately 1000 DIACOM images from normal chest and abdominal CT scans of five patients. The regions of interest were labeled by expert radiologists. Optimal trees were generated using two techniques: 10-fold cross-validation and splitting of the data set into a training and a testing set. In both cases, perfect classification rules were obtained provided enough images were available for training (~65%). All performance measures (sensitivity, specificity, precision, and accuracy) for all regions of interest were at 100%. This significantly improves previous results that used Wavelet, Ridgelet, and Curvelet texture features, yielding accuracy values in the 85%-98% range The Gabor filters' ability to isolate features at different frequencies and orientations allows for a multi-resolution analysis of texture essential when dealing with, at times, very subtle differences in the texture of tissues in CT scans.

Paper Details

Date Published: 3 March 2007
PDF: 10 pages
Proc. SPIE 6512, Medical Imaging 2007: Image Processing, 65120Q (3 March 2007); doi: 10.1117/12.710316
Show Author Affiliations
Lucia Dettori, DePaul Univ. (United States)
Alia Bashir, DePaul Univ. (United States)
Julie Hasemann, Governor State Univ. (United States)

Published in SPIE Proceedings Vol. 6512:
Medical Imaging 2007: Image Processing
Josien P. W. Pluim; Joseph M. Reinhardt, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?