Share Email Print

Proceedings Paper

Optimized photoluminescence of Si nanocrystals produced by ion implantation
Author(s): C. R. Mokry; P. J. Simpson; A. P. Knights
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We have produced Si nanocrystals by implanting Si ions at 90 keV into 430 nm thick SiO2 films, to fluences from 6 x 1016 to 1.4 x 1017 ions/cm2 (or 9 - 20 at. % excess Si). High temperature anneals at 1100°C and 1200°C in an N2 ambient followed, to coalesce the excess silicon into nanocrystalline precipitates. Samples were further annealed for 1 hr at 450°C in a 5% H2 95% N2 ambient to passivate dangling bonds and reduce non-radiative electron-hole recombinations. The films were then characterized by Photoluminescence (PL), and the PL intensity is maximized at 17 at. % excess silicon. This suggests that quantum confinement and/or the total number of nanocrystals is optimized at a Si excess of 17 at. % for high temperature annealing conditions. Annealing at 1100°C results in a greater number of smaller nanocrystals than annealing at 1200°C, and consequently a greater PL intensity. The peak wavelength of light emission reaches equilibrium after a much shorter annealing time than does the PL intensity, suggesting that the nanocrystals attain their final size before the film reaches equilibrium. Positron Annihilation Spectroscopy (PAS) was used to investigate defects in the film. The majority of defects introduced by ion implantation annealed away very quickly, in correlation with the rapid equilibration of the peak wavelength of PL emission.

Paper Details

Date Published: 8 September 2006
PDF: 7 pages
Proc. SPIE 6343, Photonics North 2006, 63432P (8 September 2006); doi: 10.1117/12.707758
Show Author Affiliations
C. R. Mokry, The Univ. of Western Ontario (Canada)
P. J. Simpson, The Univ. of Western Ontario (Canada)
A. P. Knights, McMaster Univ. (Canada)

Published in SPIE Proceedings Vol. 6343:
Photonics North 2006
Pierre Mathieu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?