Share Email Print
cover

Proceedings Paper

Correlation and coherence properties of time-averaged speckle patterns for light fields scattered by rough surfaces
Author(s): Peter Bakut; Valery Mandrosov
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We analyze the relation between the coherence properties of scattered light fields and various geometric parameters of the scattering objects. It is shown that if the coherence time τc of the probing radiation exceeds 3/ω0, with ω0 being the central frequency of the radiation spectrum, then the correlation properties of the scattered, field speckle pattern averaged over a time T>10τc determine the homogeneity domains and the coherence properties of the scattered fields. These domains and coherence properties are determined by the following parameters: the coherence length of the probing radiation Lccc, where c is the speed of light; the transverse size d and the depth Ls of the backscattering domain; the distance rc between the receiving aperture and the scattering surface, the size dp of the receiving aperture, the central wavelength of the probing radiation λ=c0, and the mean square deviation σ of the surface roughness height distribution. The obtained results enable one to find the relations between the parameters Ls, Lc, and σ corresponding to various intervals of the coherence length variation, where the scattered field manifests itself as coherent, partially coherent, and incoherent. The smallest possible coherence length of the probing optical radiation is estimated to be 8λ.

Paper Details

Date Published: 15 September 2006
PDF: 6 pages
Proc. SPIE 6341, Speckle06: Speckles, From Grains to Flowers, 63412T (15 September 2006); doi: 10.1117/12.695990
Show Author Affiliations
Peter Bakut, Moscow Institute of Physics and Technology (Russia)
Valery Mandrosov, Moscow Institute of Physics and Technology (Russia)


Published in SPIE Proceedings Vol. 6341:
Speckle06: Speckles, From Grains to Flowers
Pierre Slangen; Christine Cerruti, Editor(s)

© SPIE. Terms of Use
Back to Top