Share Email Print

Proceedings Paper

Plasmon resonant molecular sensing with single gold nanostars
Author(s): C. L. Nehl; H. Liao; J. H. Hafner
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Here we describe the application of single star-shaped gold nanoparticles (nanostars) for localized surface plasmon resonant (LSPR) sensing. The gold nanostars were fabricated by a modified seed-mediated, surfactant-directed nanoparticle synthesis which is known to produce gold nanorods in high yield. Due to the sample heterogeneity, single nanostars were studied by dark-field microspectroscopy. The single particle spectra demonstrate that the plasmon resonances of single gold nanostars are extremely sensitive to the local dielectric environment, yielding sensitivities as high as 1.41 eV photon energy shift per refractive index unit. To test their properties as molecular sensors, single nanostar spectra were monitored upon exposure to alkane thiols (mercaptohexadecanoic acid) and a proteins (bovine serum albumin) known to bind gold surfaces. The observed shifts are consistent with the effects of these molecular layers on the surface plasmon resonances in continuous gold films. The results suggest that LSPR sensing with single nanoparticles is analogous to the well developed field surface plasmon resonance (SPR) sensors, and will push the limits of sensitivity.

Paper Details

Date Published: 30 August 2006
PDF: 8 pages
Proc. SPIE 6323, Plasmonics: Metallic Nanostructures and their Optical Properties IV, 63230G (30 August 2006); doi: 10.1117/12.680679
Show Author Affiliations
C. L. Nehl, Rice Univ. (United States)
H. Liao, Rice Univ. (United States)
J. H. Hafner, Rice Univ. (United States)

Published in SPIE Proceedings Vol. 6323:
Plasmonics: Metallic Nanostructures and their Optical Properties IV
Mark I. Stockman, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?