Share Email Print

Proceedings Paper

Coastal microbial fuel cell: scaling laws and systems
Author(s): Promode R. Bandyopadhyay; Frank J. McNeilly; Daniel P. Thivierge; Albert R. Fredette
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Microbes, like Geobacters, have inhabited the seafloors around the world since the early days of earth. Such regions are anaerobic and they gain energy by using the widely prevalent iron oxides and organic matters. Because they appear to colonize conducting surfaces that act as sinks of electrons, microbial fuel cells have been shown to convert organic matter to electricity. A microbial fuel cell system has been deployed in Narragansett Bay in Newport, Rhode Island for a year. Currently, the cathode and anode areas are of the order of that of a small wind mill. Measurements have been carried out to determine the marine scaling laws of power harvesting in passive benthic microbial fuel cells. The focus has been on the ocean engineering aspects such as marine scaling laws and the integration of the biochemical and the electronic systems. The characteristics examined are: the relationship of electrode surface area and power produced, the stabilization rates of ionic paths, that is, the effects of location depth of cathodes on stabilization after deployment, the effects of solar and lunar cycles in the Narragansett Bay on the dynamic components of power produced, and the hysteresis effects between periods of active power harvesting and dormancy; the effects of 'on sediment surface' versus 'in sediment' anode deployment have been examined for smaller electrode areas so far. A capacitance model of power consumption and harvesting has been proposed for the marine environment. It is assumed that the primordial benthic microbe laden layer of the earth acts like a giant capacitor. In the microbial fuel cell, this charged benthic layer acts in series with a smaller constant voltage DC power source. This giant benthic capacitance is a result of untapped accumulated charge from the microbes while the DC source originates from the real-time production due to the microbes. Finally, the microbial fuel cell is integrated with a power conversion system to intermittently energize a small incandescent lantern in the NUWC Stillwater Basin located in Narragansett Bay in Rhode Island.

Paper Details

Date Published: 2 May 2006
PDF: 12 pages
Proc. SPIE 6231, Unattended Ground, Sea, and Air Sensor Technologies and Applications VIII, 62310S (2 May 2006); doi: 10.1117/12.673727
Show Author Affiliations
Promode R. Bandyopadhyay, Naval Undersea Warfare Ctr. (United States)
Frank J. McNeilly, Naval Undersea Warfare Ctr. (United States)
Daniel P. Thivierge, Naval Undersea Warfare Ctr. (United States)
Albert R. Fredette, Naval Undersea Warfare Ctr. (United States)

Published in SPIE Proceedings Vol. 6231:
Unattended Ground, Sea, and Air Sensor Technologies and Applications VIII
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?