Share Email Print

Proceedings Paper

Design of a polarimeter for extrasolar planetary systems characterization
Author(s): Christoph U. Keller
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Unpolarized light from the central star that is reflected by exoplanets, protoplanetary disks, and debris disks becomes partially polarized by the reflection process. Imaging polarimetry is therefore the ideal way to discriminate between the polarized light from circumstellar environments and the unpolarized light from the nearby central star. A sensitivity of 10-5 (fraction of polarized intensity to the total intensity) must be achieved to detect exoplanets; 10-4 is sufficient for disks. Based on extensive experience in precision polarimetry of the Sun, the newly formed experimental astrophysics group at Utrecht University, The Netherlands, will design, build, and use a high-precision imaging polarimeter for use at the 4.2-meter William Herschel Telescope. Since systematic errors typically limit conventional imaging polarimeters to about 10-3, laboratory setups and theoretical models will be used to understand and then minimize and/or calibrate systematic errors. Published catalogues of exoplanets and stars that harbor disks will guide extensive observations with this new polarimeter. The effort will focus on retrieving fundamental properties of circumstellar environments that cannot be obtained with other observational approaches.

Paper Details

Date Published: 28 June 2006
PDF: 10 pages
Proc. SPIE 6269, Ground-based and Airborne Instrumentation for Astronomy, 62690T (28 June 2006); doi: 10.1117/12.671472
Show Author Affiliations
Christoph U. Keller, Utrecht Univ. (Netherlands)

Published in SPIE Proceedings Vol. 6269:
Ground-based and Airborne Instrumentation for Astronomy
Ian S. McLean; Masanori Iye, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?