Share Email Print

Proceedings Paper

Optical properties of solid core honeycomb photonic crystal fiber with different doping levels
Author(s): Guangyu Xu; Wei Zhang; Yidong Huang; Jiangde Peng
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Group velocity dispersion (GVD) and effective mode area (Aeff) of solid core honeycomb cladding photonic crystal fiber (PCF) with different up/down doping levels are investigated theoretically. Both total internal reflection (TIR) and photonic bandgap (PBG) guiding mechanisms are shown to be available in this fiber structure with gradual change of the doping level. It is noted that the previously overlooked TIR guiding design with up-doping could acquire improved nonlinear property compared with PBG mechanism in short normalized wavelength region. On the other hand, the total GVD is shown to be dominated by waveguide dispersion corresponding to the fiber structure. Numerical results show that HPCF can achieve small Aeff with low air-fill fraction, and doping level in HPCF provides an additional way to change GVD excepting structure parameters. Special cases are given to demonstrate the potential of HPCF in combining design of Aeff and GVD, aiming at applications such as Raman amplification and dispersion compensation around 1550nm.

Paper Details

Date Published: 28 January 2006
PDF: 6 pages
Proc. SPIE 6025, ICO20: Optical Communication, 602505 (28 January 2006);
Show Author Affiliations
Guangyu Xu, Tsinghua Univ. (China)
Wei Zhang, Tsinghua Univ. (China)
Yidong Huang, Tsinghua Univ. (China)
Jiangde Peng, Tsinghua Univ. (China)

Published in SPIE Proceedings Vol. 6025:
ICO20: Optical Communication
Yun-Chur Chung; Shizhong Xie, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?