Share Email Print

Proceedings Paper

Field lysimeters for the study of fate and transport of explosive chemicals in soils under variable environmental conditions
Author(s): Gloria M. Molina; Ingrid Padilla; Miguel Pando; Diego D. Pérez
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Landmines and other buried explosive devices pose in an immense threat in many places of the world, requiring large efforts on detection and neutralization of these objects. Many of the available detection techniques require the presence of chemicals near the soil-atmospheric surface. The presence of explosive related chemicals (ERCs) near this surface and their relation to the location of landmines, however, depends on the source characteristics and on fate and transport processes that affect their movement in soils. Fate and transport processes of ERC is soils may be interrelated with each other and are influenced by chemical characteristics and interrelated soil and environmental factors. Accurate detection of ERCs near the soil surface must, therefore, take into the variability of ERC concentration distributions near the soil surface as affected by fate and transport processes controlled interrelated environmental factors. To effectively predict the concentration distributions of ERCs in soils and near soil surfaces, it is necessary to have good understanding of parameters values that control these processes. To address this need, field lysimeters have been designed and developed at the University of Puerto Rico, Mayaguez .This paper presents the design of two field lysimeter used to study the fate and transport behavior of ERC in the field subjected to varying uncontrolled subtropical environmental conditions in two different soils. Both lysimeters incorporate pressure and concentration sampling ports, thermocouples, and a drainage system. Hydrus-2D was used to simulate soil moisture and drainage in the lysimeter for average environmental conditions in the study for the two soils used. The field lysimeters allow collection and monitoring of spatial and temporal ERC concentrations under variable, uncontrolled environmental conditions.

Paper Details

Date Published: 18 May 2006
PDF: 12 pages
Proc. SPIE 6217, Detection and Remediation Technologies for Mines and Minelike Targets XI, 62173A (18 May 2006); doi: 10.1117/12.666297
Show Author Affiliations
Gloria M. Molina, Univ. of Puerto Rico at Mayaguez (United States)
Ingrid Padilla, Univ. of Puerto Rico at Mayaguez (United States)
Miguel Pando, Univ. of Puerto Rico at Mayaguez (United States)
Diego D. Pérez, Univ. of Texas at Arlington (United States)

Published in SPIE Proceedings Vol. 6217:
Detection and Remediation Technologies for Mines and Minelike Targets XI
J. Thomas Broach; Russell S. Harmon; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?