Share Email Print

Proceedings Paper

Rollover prevention for sport utility vehicle using fuzzy logic controller
Author(s): Yong-hwi Lee; Seung-Jong Yi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The purpose of this study is to develop the fuzzy logic RSC(Roll Stability Control) system to prevent the rollover for the SUV(sport utility vehicle). The SUV model used in this study is the 8-DOF model considering the longitudinal, lateral, yaw and roll motions. The longitudinal and transversal weight transfers are considered in the computation of the vertical forces acting on a wheel. The engine torque is obtained from the throttle position and the r.p.m. of the engine map. The fuzzy logic controller input consists of the roll angle error and its derivative. The output is the brake torque and the throttle angle. The engine torque controller controls the throttle valve angle. The brake controller independently controls both right and left wheels. When the roll angle is ±4.5° defined as the critical roll angle, the front inner tire experiences the 1/100 ~ 1/50 of the total vertical forces, and the rollover starts. To prevent the rollover in advance, the target angle ±4.5° is adopted to control the vehicle stability. The RSC system begins operating at ±4.5° and stops at 0°. The simulations are conducted to evaluate the controller performance at right turns for the excessive steering angle. When the roll angle error and its derivative exceed the limited point, the RSC system makes the longitudinal velocity of the SUV decrease the brake torque and adjusts the throttle angle. The roll motion of the SUV is then stabilized.

Paper Details

Date Published: 2 May 2006
PDF: 6 pages
Proc. SPIE 6042, ICMIT 2005: Control Systems and Robotics, 604218 (2 May 2006); doi: 10.1117/12.664595
Show Author Affiliations
Yong-hwi Lee, Seojin Clutch Corp. (South Korea)
Seung-Jong Yi, Hanyang Univ. (South Korea)

Published in SPIE Proceedings Vol. 6042:
ICMIT 2005: Control Systems and Robotics
Yunlong Wei; Kil To Chong; Takayuki Takahashi; Shengping Liu; Zushu Li; Zhongwei Jiang; Jin Young Choi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?