Share Email Print

Proceedings Paper

Study of a reinforced concrete beam strengthened using a combination of SMA wire and CFRP plate
Author(s): Zhi-qiang Liu; Hui Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Traditional methods used for strengthening of reinforced concrete (RC) structures, such as bonding of steel plates, suffer from inherent disadvantages. In recent years, strengthening of RC structures using carbon fiber reinforced polymer (CFRP) plates has attracted considerable attentions around the world. Most existing research on CFRP plate bonding for flexural strengthening of RC beams has been carried out for the strength enhancement. However, little research is focused on effect of residual deformations on the strengthening. The residual deformations have an important effect on the strengthening by CFRP plates. There exists a very significant challenge how the residual deformations are reduced. Shape memory alloy (SMA) has showed outstanding functional properties as an actuator. It is a possibility that SMA can be used to reduce the residual deformation and make cracks of concrete close by imposing the recovery forces on the concrete in the tensile zone. It is only an emergency damage repair since the SMA wires need to be heated continuously. So, an innovative method of a RC beam strengthened by CFRP plates in combination with SMA wires was first investigated experimentally in this paper. In addition, the nonlinear finite element software of ABAQUS was employed to further simulate the behavior of RC beams strengthened through the new strengthening method. It can be found that this is an excellent and effective strengthening method.

Paper Details

Date Published: 5 April 2006
PDF: 8 pages
Proc. SPIE 6173, Smart Structures and Materials 2006: Smart Structures and Integrated Systems, 617319 (5 April 2006); doi: 10.1117/12.660780
Show Author Affiliations
Zhi-qiang Liu, Harbin Institute of Technology (China)
Hui Li, Harbin Institute of Technology (China)

Published in SPIE Proceedings Vol. 6173:
Smart Structures and Materials 2006: Smart Structures and Integrated Systems
Yuji Matsuzaki, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?