Share Email Print

Proceedings Paper

Scheduling policies of intelligent sensors and sensor/actuators in flexible structures
Author(s): Michael A. Demetriou; Raffaele Potami
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

Paper Details

Date Published: 5 April 2006
PDF: 12 pages
Proc. SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 61740E (5 April 2006); doi: 10.1117/12.659520
Show Author Affiliations
Michael A. Demetriou, Worcester Polytechnic Institute (United States)
Raffaele Potami, Worcester Polytechnic Institute (United States)

Published in SPIE Proceedings Vol. 6174:
Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Masayoshi Tomizuka; Chung-Bang Yun; Victor Giurgiutiu, Editor(s)

© SPIE. Terms of Use
Back to Top