Share Email Print

Proceedings Paper

Study on statistical models for land mobile satellite channel
Author(s): Ying Wang; Xiulin Hu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Mobile terminals in a mobile satellite communication system cause the radio propagation channel to vary with time. So it is necessary to study the channel models in order to estimate the behavior of satellite signal propagation. A lot of research work have been done on the L- and S- bands. With the development of gigabit data transmissions and multimedia applications in recent years, the Ka-band studies gain much attention. Non-geostationary satellites are also in research because of its low propagation delay and low path loss. The future satellite mobile communication systems would be integrated into the other terrestrial networks in order to enable global, seamless and ubiquitous communications. At the same time QoS-technologies are studied to satisfy users' different service classes, such as mobility and resource managements. All the above make a suitable efficient channel model face new challenges. This paper firstly introduces existed channel models and analyzes their respective characteristics. Then we focus on a general model presented by Xie YongJun, which is popular under any environment and describes difference through different parameter values. However we believe that it is better to take multi-state Markov model as category in order to adapt to different environments. So a general model based on Markov process is presented and necessary simulation is carried out.

Paper Details

Date Published: 4 January 2006
PDF: 5 pages
Proc. SPIE 5985, International Conference on Space Information Technology, 598517 (4 January 2006); doi: 10.1117/12.656820
Show Author Affiliations
Ying Wang, Huazhong Univ. of Science and Technology (China)
Xiulin Hu, Huazhong Univ. of Science and Technology (China)

Published in SPIE Proceedings Vol. 5985:
International Conference on Space Information Technology
Cheng Wang; Shan Zhong; Xiulin Hu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?