Share Email Print

Proceedings Paper

Monitoring photoresist dissolution in supercritical carbon dioxide using a quartz crystal microbalance
Author(s): Amy E. Zweber; Ruben G. Carbonell
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

New lithographic techniques are being implemented to help further reduce feature sizes in microelectronics. A technique for the development of standard commercial extreme ultraviolet (EUV) photoresists in a carbon dioxide compatible salt (CCS) and supercritical carbon dioxide (scCO2) solution is being investigated to reduce line edge roughness and image collapse of high aspect ratio features.1,2 To understand the kinetics and overall mechanism of photoresist dissolution into the high pressure CCS/scCO2 solution, we use a quartz crystal microbalance (QCM). QCM measures the frequency changes of the quartz crystal when mass loadings, temperature, pressure, and solution viscosity change. In the last decade, QCM has been used to monitor dissolution of photoresist materials in liquid solutions in real time.3 The technique has been adapted to high pressure systems, with corrections for pressure and solution viscosity effects.4 In this paper, QCM was used in high pressure scCO2 conditions to monitor the dissolution kinetics of the photoresist using the CCS/scCO2 solution. The frequency changes of the quartz crystal were recorded and corrected for both pressure and solution viscosity to estimate the mass removed as a function of time. The initial photoresist dissolution rates in the CCS/scCO2 solution at temperatures between 35°C and 50°C and pressures ranging from 3500 psi to 5000 psi are reported. The plots of photoresist removal with time are linear signifying a zero order overall removal rate. The activation energy for photoresist removal at a CO2 density of 0.896 g/ml is 76 mJ/mol.

Paper Details

Date Published: 29 March 2006
PDF: 9 pages
Proc. SPIE 6153, Advances in Resist Technology and Processing XXIII, 61534C (29 March 2006); doi: 10.1117/12.655659
Show Author Affiliations
Amy E. Zweber, North Carolina State Univ. (United States)
Ruben G. Carbonell, North Carolina State Univ. (United States)

Published in SPIE Proceedings Vol. 6153:
Advances in Resist Technology and Processing XXIII
Qinghuang Lin, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?