Share Email Print
cover

Proceedings Paper

Gaussian frequency blending algorithm with matrix inversion tomosynthesis (MITS) and filtered back projection (FBP) for better digital breast tomosynthesis reconstruction
Author(s): Ying Chen; Joseph Y. Lo; Jay A. Baker; James T. Dobbins III
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Breast cancer is a major problem and the most common cancer among women. The nature of conventional mammpgraphy makes it very difficult to distinguish a cancer from overlying breast tissues. Digital Tomosynthesis refers to a three-dimensional imaging technique that allows reconstruction of an arbitrary set of planes in the breast from limited-angle series of projection images as the x-ray source moves. Several tomosynthesis algorithms have been proposed, including Matrix Inversion Tomosynthesis (MITS) and Filtered Back Projection (FBP) that have been investigated in our lab. MITS shows better high frequency response in removing out-of-plane blur, while FBP shows better low frequency noise propertities. This paper presents an effort to combine MITS and FBP for better breast tomosynthesis reconstruction. A high-pass Gaussian filter was designed and applied to three-slice "slabbing" MITS reconstructions. A low-pass Gaussian filter was designed and applied to the FBP reconstructions. A frequency weighting parameter was studied to blend the high-passed MITS with low-passed FBP frequency components. Four different reconstruction methods were investigated and compared with human subject images: 1) MITS blended with Shift-And-Add (SAA), 2) FBP alone, 3) FBP with applied Hamming and Gaussian Filters, and 4) Gaussian Frequency Blending (GFB) of MITS and FBP. Results showed that, compared with FBP, Gaussian Frequency Blending (GFB) has better performance for high frequency content such as better reconstruction of micro-calcifications and removal of high frequency noise. Compared with MITS, GFB showed more low frequency breast tissue content.

Paper Details

Date Published: 2 March 2006
PDF: 9 pages
Proc. SPIE 6142, Medical Imaging 2006: Physics of Medical Imaging, 61420E (2 March 2006); doi: 10.1117/12.652264
Show Author Affiliations
Ying Chen, Duke Univ. (United States)
Duke Univ. Medical Ctr. (United States)
Joseph Y. Lo, Duke Univ. (United States)
Duke Univ. Medical Ctr. (United States)
Jay A. Baker, Duke Univ. Medical Ctr. (United States)
James T. Dobbins III, Duke Univ. (United States)
Duke Univ. Medical Ctr. (United States)


Published in SPIE Proceedings Vol. 6142:
Medical Imaging 2006: Physics of Medical Imaging
Michael J. Flynn; Jiang Hsieh, Editor(s)

© SPIE. Terms of Use
Back to Top