Share Email Print

Proceedings Paper

The use of lasers for semiconductor scribing/singulation applications
Author(s): Sri Venkat; Corey Dunsky
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Semiconductor manufacturing, is dominated by the relentless demand for electronic products with greater performance, minimized dimensions, increased sophistication, and higher speed, all at reduced process cost. Logic device manufacturers need to satisfy this demand by producing integrated circuits that meet the predicted density increase encapsulated in Moore's law. This has led to the use of low-κ dielectrics. For memory devices, thinner wafers are used to enable close stacking of multiple dies in a single low-profile package. And in a third market segment, newer photonic devices are using novel materials such as GaAs, SiC, GaN and sapphire. Traditional mechanical methods are struggling to meet the singulation needs in all three of these device types. Yet at the same time, market realities dictate that the effective cost for increased processing power, novel photonic performance, and higher memory density all continue to fall. As a result, laser-based methods are being adopted in all three areas. In this overview paper, we examine the drivers for each of these market segments and see how laser technology is meeting the singulation demands of current and future devices.

Paper Details

Date Published: 1 March 2006
PDF: 9 pages
Proc. SPIE 6106, Photon Processing in Microelectronics and Photonics V, 610608 (1 March 2006); doi: 10.1117/12.651546
Show Author Affiliations
Sri Venkat, Coherent, Inc. (United States)
Corey Dunsky, Coherent, Inc. (United States)

Published in SPIE Proceedings Vol. 6106:
Photon Processing in Microelectronics and Photonics V
David B. Geohegan; Tatsuo Okada; Craig B. Arnold; Frank Träger; Jan J. Dubowski; Michel Meunier; Andrew S. Holmes, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?