Share Email Print

Proceedings Paper

Fabrication and integration of micro/nano-scale optical waveguides and photonic devices for application-specific planar optical integrated circuit board
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a review of our work on the micro/nano-scale design, fabrication and integration of optical waveguide arrays and devices for what we call application-specific "optical printed circuit boards" (O-PCBs). Generic O-PCBs are composed of an optical layer carrying basic forms of optical wires and devices and an electrical layer carrying arrays of electrical wires and devices. Application-specific O-PCBs carry optical layers that are composed of varied forms of optical wires and devices tailored to perform specific functions. In this paper, we present two examples of application specific O-PCB: One is a module for inter-chip optical interconnection application and the other is an all optical wavelength splitting triplexer module that we investigated for subscriber telecommunication application. The inter-chip optical interconnection module is to replace copper wires between the central processing units (CPUs) and memory chips in the computer system. The triplexer module is composed of an array of cascaded directional couplers to split the wavelengths for fiber-to-the-home (FTTH) subscriber system application. All these O-PCBs consist of planar circuits and arrays of polymer waveguides and devices of various dimensions and characteristics to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards. We fabricate polymer waveguide by way of thermal or ultraviolet (UV) embossing (or imprinting) technique. Theoretical calculations provide design rules for the miniaturization of the waveguide devices and for the maximization of the integration densities of the waveguides and devices to be placed on the O-PCBs.

Paper Details

Date Published: 3 March 2006
PDF: 9 pages
Proc. SPIE 6124, Optoelectronic Integrated Circuits VIII, 612408 (3 March 2006); doi: 10.1117/12.650119
Show Author Affiliations
El-Hang Lee, Inha Univ. (South Korea)
S. G. Lee, Inha Univ. (South Korea)
B. H. O, Inha Univ. (South Korea)
S. G. Park, Inha Univ. (South Korea)
K. H. Kim, Inha Univ. (South Korea)

Published in SPIE Proceedings Vol. 6124:
Optoelectronic Integrated Circuits VIII
Louay A. Eldada; El-Hang Lee, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?