Share Email Print
cover

Proceedings Paper

Investigation of retinal vessel autoregulation using real-time spectral domain Doppler optical coherence tomography
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Investigation of the autoregulatory mechanism of human retinal perfusion was conducted with a novel real-time spectral domain Doppler optical coherence tomography (SDOCT) system. Volumetric, time-sequential, and Doppler flow imaging was performed in the superior arcade region on normal healthy subjects breathing normal room air and 100% oxygen. The real-time Doppler SDOCT system displays fully processed, high-resolution [512 (axial) x 1000 (lateral) pixels] B-scans at 17 frames/sec in volumetric and time-sequential imaging modes, and also displays fully processed overlaid color Doppler flow images comprising 512 (axial) x 500 (lateral) pixels at 6 frames/sec. OCT fundus images generated from volumetric datasets updated in real time (up to 2 fundus images/sec for 100 x 100 pixel volumes) were used to image and localize retinal vessels for time-sequential and Doppler flow analysis. In preliminary measurements, data acquired following 5 minutes of 100% oxygen inhalation was compared with that acquired 5 minutes post-inhalation. The same arterial segments examined at both time points exhibit constriction in vessel diameter under pure oxygen inhalation of up to 7% and reduction in peak flow velocity as great as 38%, both of which are in good agreement with previous laser Doppler velocimetry studies.

Paper Details

Date Published: 20 February 2006
PDF: 4 pages
Proc. SPIE 6079, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, 60790D (20 February 2006);
Show Author Affiliations
Bradley A. Bower, Duke Univ. (United States)
Mingtao Zhao, Duke Univ. (United States)
Joseph A. Izatt, Duke Univ. (United States)


Published in SPIE Proceedings Vol. 6079:
Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X
Valery V. Tuchin; Joseph A. Izatt; James G. Fujimoto, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray