Share Email Print

Proceedings Paper

Virtual reality and the unfolding of higher dimensions
Author(s): Julieta C. Aguilera
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

As virtual/augmented reality evolves, the need for spaces that are responsive to structures independent from three dimensional spatial constraints, become apparent. The visual medium of computer graphics may also challenge these self imposed constraints. If one can get used to how projections affect 3D objects in two dimensions, it may also be possible to compose a situation in which to get used to the variations that occur while moving through higher dimensions. The presented application is an enveloping landscape of concave and convex forms, which are determined by the orientation and displacement of the user in relation to a grid made of tesseracts (cubes in four dimensions). The interface accepts input from tridimensional and four-dimensional transformations, and smoothly displays such interactions in real-time. The motion of the user becomes the graphic element whereas the higher dimensional grid references to his/her position relative to it. The user learns how motion inputs affect the grid, recognizing a correlation between the input and the transformations. Mapping information to complex grids in virtual reality is valuable for engineers, artists and users in general because navigation can be internalized like a dance pattern, and further engage us to maneuver space in order to know and experience.

Paper Details

Date Published: 30 January 2006
PDF: 8 pages
Proc. SPIE 6055, Stereoscopic Displays and Virtual Reality Systems XIII, 60551V (30 January 2006); doi: 10.1117/12.643651
Show Author Affiliations
Julieta C. Aguilera, Univ. of Illinois at Chicago (United States)

Published in SPIE Proceedings Vol. 6055:
Stereoscopic Displays and Virtual Reality Systems XIII
Andrew J. Woods; Mark T. Bolas; Ian E. McDowall; Neil A. Dodgson; John O. Merritt, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?