Share Email Print

Proceedings Paper

Automated system for laser damage testing of coated optics
Author(s): Dale C. Ness; Alan D. Streater
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Research Electro-Optics Inc. (REO) has recently developed a new laser damage testing facility for the purpose of optimizing process parameters for fabrication and coating of high-damage optics. It also enables full or sample qualification of optics with laser damage specifications. The fully automated laser damage testing system uses microscope photography for detection of damage and a 3 ns pulse length 1064 nm laser for irradiation of the sample. It can test and statistically analyze damage events from a large number of shots, enabling large area testing for low probability events. The system measures and maps sizes and locations of damage sites down to a few microns in diameter. The results are not subject to variations due to the human operator. For coatings deposited by ion beam sputtering, small defects (less than 20 microns) are found to be most prevalent at the fluences specified for small optics for the National Ignition Facility. The ability to measure and characterize small defects has improved REO's ability to optimize their processes for making coated optics with high damage thresholds. In addition to qualifying particular parts, the periodic testing also assures that equipment and processes remain optimized.

Paper Details

Date Published: 7 February 2006
PDF: 9 pages
Proc. SPIE 5991, Laser-Induced Damage in Optical Materials: 2005, 59912B (7 February 2006); doi: 10.1117/12.638987
Show Author Affiliations
Dale C. Ness, Research Electro-Optics Inc. (United States)
Alan D. Streater, Research Electro-Optics Inc. (United States)

Published in SPIE Proceedings Vol. 5991:
Laser-Induced Damage in Optical Materials: 2005
Gregory J. Exarhos; Arthur H. Guenther; Keith L. Lewis; Detlev Ristau; M.J. Soileau; Christopher J. Stolz, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?