Share Email Print

Proceedings Paper

Multi-parameter synthesis of microsystems
Author(s): Gino Rinaldi; Muthukumaran Packirisamy; Ion Stiharu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Micro-electro-mechanical systems (MEMS) by definition are coupled electrical and mechanical microsystems. Additionally, microfabrication tolerances, device geometry and thermal effects, for example, will further cloud the performance characteristics. Hence, the consolidation of these individual parameters into a single output based upon "forward-step" modeling will allow for a complete performance characterization in a manner where changes to the static and dynamic outputs are monitored in a step wise fashion through the addition of the individual parameters separately. This deterministic approach aims to synthesize the "parameter-matrix" under which the microsystem is constrained, both by device design and by the eventual operating conditions. The theoretical modeling of the synthesized parameters into an output determinant would be a valuable design tool especially when targeting specific performance characteristics at the design stage of the microsystem that are tied to both the device design and operating conditions. This paper presents a method for microsystem performance modeling based on the solution of a parameter-matrix into a deterministically synthesized output response. The mathematical modeling is based upon the Rayleigh-Ritz energy method using boundary characteristic orthogonal polynomials. The synthesized output models the static and dynamic response of the step-forward addition of individual microsystem parameters, which when they have been evaluated can be used to specify design criteria under a given set of operating conditions. This analysis method will not only allow the designers of microsystems to determine the influence of intrinsic and extrinsic limitations and conditions, but also to establish viable MEMS platforms based on predetermined output performance characteristics.

Paper Details

Date Published: 11 October 2005
PDF: 11 pages
Proc. SPIE 5970, Photonic Applications in Devices and Communication Systems, 597016 (11 October 2005); doi: 10.1117/12.628604
Show Author Affiliations
Gino Rinaldi, Concordia Univ. (Canada)
Muthukumaran Packirisamy, Concordia Univ. (Canada)
Ion Stiharu, Concordia Univ. (Canada)

Published in SPIE Proceedings Vol. 5970:
Photonic Applications in Devices and Communication Systems
Peter Mascher; John C. Cartledge; Andrew Peter Knights; David V. Plant, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?