Share Email Print

Proceedings Paper

Challenges to optimizing a telescope system to detect and characterize exo-solar planetary systems
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Novel optical design and engineering ideas are needed to build the large space telescopes for the direct detection and characterization of exo-solar system planets. For example, the Terrestrial Planet Finder Coronagraph requires a primary mirror 4 x 8 meters in size that is >10 x smoother than the 2.8 meter HST mirror and have a uniform reflectivity across the mirror to within 0.1%. The telescope system will need to control scattered light to within a part in 10 billion. The Terrestrial Planet Finder Interferometer will be a white-light, broadband infrared interferometer with a baseline in excess of 50 meters. In addition to direct imaging, planets masses and orbits can be derived from very precise measurements of the position of a star as it moves across the background. Interferometers provide the highest accuracy measurements of relative positions We will show that the optical design and the mechanical layout & configuration for these new telescopes need to be optimized for polarization as well as scattered light. Material science and coating technology plays an important role in the optimization of these systems. Stress across the surface of a mirror and stress within the optical thin film introduces polarization dependent scattered light. A new method to measure the anisotropy of the polarization-reflectivity of thin metal films on large astronomical mirrors is described.

Paper Details

Date Published: 29 August 2005
PDF: 7 pages
Proc. SPIE 5875, Novel Optical Systems Design and Optimization VIII, 587508 (29 August 2005);
Show Author Affiliations
James B. Breckinridge, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 5875:
Novel Optical Systems Design and Optimization VIII
Jose M. Sasian; R. John Koshel; Richard C. Juergens, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?