Share Email Print

Proceedings Paper

Efficient modeling of immersion lithography in an aggressive RET mask synthesis flow
Author(s): Min Bai; Junjiang Lei; Lin Zhang; James P. Shiely
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Immersion lithography has been accepted as the major breakthrough for enabling next generation deep subwavelength chip production. As it extends the resolution capability of optical lithography to the next technology node, it brings fresh challenges to resolution enhancement techniques (RET). Accurate lithography modeling becomes even more critical for RET at the sub-65nm nodes. On the other hand, immersion models need to be fully compatible within the context of existing optical proximity correction (OPC) flow. With the hyper NA approach, modeling of immersion lithography requires full vector treatment of the electric fields in the propagating light wave. We developed a comprehensive vector model that considers not only the plane wave decomposition from the mask to the wafer plane, but also the light propagation through a thin film stack on the wafer. With the integration of this model into Synopsys OPC modeling tool ProGen, we have simulated and demonstrated several important enhancements introduced by immersion. In the mean time, the modeling and correction flow for immersion is completely compatible with the current OPC infrastructure.

Paper Details

Date Published: 28 June 2005
PDF: 8 pages
Proc. SPIE 5853, Photomask and Next-Generation Lithography Mask Technology XII, (28 June 2005); doi: 10.1117/12.617228
Show Author Affiliations
Min Bai, Synopsys Inc. (United States)
Junjiang Lei, Synopsys Inc. (United States)
Lin Zhang, Synopsys Inc. (United States)
James P. Shiely, Synopsys Inc. (United States)

Published in SPIE Proceedings Vol. 5853:
Photomask and Next-Generation Lithography Mask Technology XII
Masanori Komuro, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?