Share Email Print

Proceedings Paper

Pattern based mask process correction: impact on data quality and mask writing time
Author(s): Emile Sahouria; Amanda Bowhill; Steffen Schulze
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The continuous drive of the semiconductor industry towards smaller features sizes requires mask manufacturers to achieve ever tighter tolerances for the most critical dimensions on the mask. CD uniformity requires particularly tight control. Equipment manufacturers and process engineers target their development to support these requirements. But as numerous publications indicate, more sophisticated data correction methods are still employed to compensate for shortcomings in equipment and process or to account for the boundary conditions in some layouts that contribute to process deviations. Among the corrected effects are proximity and linearity effects, fogging and etch effects, and pattern fidelity. Different designs vary by pattern size distribution as well as by pattern density distribution. As the implementation of corrections for optical proximity effects in wafer lithography has shown, breaking up the original polygons in the design layout for selective and environment-aware correction yields increased data volumes and can have an impact on the data quality of the mask writing data. The paper investigates the effect of various correction algorithms specifically deployed for mask process effects on top of wafer process related corrections. The impact of MPC flows such as rule-based linearity and proximity correction and density-based long range effect correction on the metrics for data preparation and mask making is analyzed. Experimental data on file size, shot count and data quality indicators including small figure counts are presented for different correction approaches and a variety of correction parameters.

Paper Details

Date Published: 28 June 2005
PDF: 10 pages
Proc. SPIE 5853, Photomask and Next-Generation Lithography Mask Technology XII, (28 June 2005); doi: 10.1117/12.617133
Show Author Affiliations
Emile Sahouria, Mentor Graphics Corp. (United States)
Amanda Bowhill, Mentor Graphics Corp. (United States)
Steffen Schulze, Mentor Graphics Corp. (United States)

Published in SPIE Proceedings Vol. 5853:
Photomask and Next-Generation Lithography Mask Technology XII
Masanori Komuro, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?