Share Email Print

Proceedings Paper

Seismic damage identification using multi-line distributed fiber optic sensor system
Author(s): Jinping Ou; Shuang Hou
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Determination of the actual nonlinear inelastic response mechanisms developed by civil structures such as buildings and bridges during strong earthquakes and post-earthquake damage assessment of these structures represent very difficult challenges for earthquake structural engineers. One of the main reasons is that the traditional sensor can't serve for such a long period to cover an earthquake and the seismic damage location in the structure can't be predicted in advance definitely. It is thought that the seismic damage of reinforced concrete (RC) structure can be related to the maximum response the structure, which can also be related to the cracks on the concrete. A distributed fiber optic sensor was developed to detect the cracks on the reinforced concrete structure under load. Fiber optic couples were used in the sensor system to extend the sensor system's capacity from one random point detection to more. An optical time domain reflectometer (OTDR) is employed for interrogation of the sensor signal. Fiber optic sensors are attached on the surface of the concrete by the epoxy glue. By choosing the strength of epoxy, the damage state of the concrete can be responded to the occurrence of the Fresnel scattering in the fiber optic sensor. Experiments involved monotonic loading to failure. Finally, the experimental results in terms of crack detection capability are presented and discussed.

Paper Details

Date Published: 13 June 2005
PDF: 6 pages
Proc. SPIE 5856, Optical Measurement Systems for Industrial Inspection IV, (13 June 2005); doi: 10.1117/12.612449
Show Author Affiliations
Jinping Ou, Harbin Institute of Technology (China)
Shuang Hou, Harbin Institute of Technology (China)

Published in SPIE Proceedings Vol. 5856:
Optical Measurement Systems for Industrial Inspection IV
Wolfgang Osten; Christophe Gorecki; Erik L. Novak, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?