Share Email Print

Proceedings Paper

Quantum entanglement of K+ ions, multiple channel states, and the role of noise in the brain
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We propose a quantum information scheme that builds on the interference properties of entangled ion states that are transiently confined by local potentials within the permeation path of voltage-gated, ion-conducting membrane proteins. We show, that the sub-molecular organization of parts of the protein, as revealed by the recent progress in high-resolution atomic-level spectroscopy and accompaning molecular dynamics simulations, carries a logical coding potency that goes beyond the pure catalytic function of the channel, subserving the transmembrane crossing of an electrodiffusive barrier. As we argue that 'within channel states' can become super-correlated with the environment , this also sheds new light on the role of noise in controlling the access of ions to voltage-gated ion channels ('channel noise').

Paper Details

Date Published: 23 May 2005
PDF: 10 pages
Proc. SPIE 5841, Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems III, (23 May 2005); doi: 10.1117/12.609227
Show Author Affiliations
Gustav Bernroider, Univ. of Salzburg (Austria)
Sisir Roy, Indian Statistical Institute (India)

Published in SPIE Proceedings Vol. 5841:
Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems III
Nigel G. Stocks; Derek Abbott; Robert P. Morse, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?