Share Email Print

Proceedings Paper

Fluctuations and noise: a general model with applications
Author(s): R. F. O'Connell
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A wide variety of dissipative and fluctuation problems involving a quantum system in a heat bath can be described by the independent-oscillator (IO) model Hamiltonian. Using Heisenberg equations of motion, this leads to a generalized quantum Langevin equation (QLE) for the quantum system involving two quantities which encapsulate the properties of the heat bath. Applications include: atomic energy shifts in a blackbody radiation heat bath; solution of the problem of runaway solutions in QED; electrical circuits (resistively shunted Josephson barrier, microscopic tunnel junction, etc.); conductivity calculations (since the QLE gives a natural separation between dissipative and fluctuation forces); dissipative quantum tunneling; noise effects in gravitational wave detectors; anomalous diffusion; strongly driven quantum systems; decoherence phenomena; analysis of Unruh radiation and entropy for a dissipative system.

Paper Details

Date Published: 23 May 2005
PDF: 14 pages
Proc. SPIE 5842, Fluctuations and Noise in Photonics and Quantum Optics III, (23 May 2005); doi: 10.1117/12.608113
Show Author Affiliations
R. F. O'Connell, Louisiana State Univ. (United States)

Published in SPIE Proceedings Vol. 5842:
Fluctuations and Noise in Photonics and Quantum Optics III
Philip R. Hemmer; Julio R. Gea-Banacloche; Peter Heszler Sr.; M. Suhail Zubairy, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?