Share Email Print

Proceedings Paper

Effect of film composition on the performance of interdigitated electrode methods used for chemically amplified photoresist characterization: methods for analyzing photoresist materials containing base quencher
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Previously, a method which utilizes interdigitated electrode (IDE) sensors to collect capacitance versus exposure dose data for thin films containing a photoacid generator (PAG) and polymer and subsequently calculate the Dill C photoreaction rate constant for the photoacid generator has been presented. This paper discusses a method for extending such IDE methods to calculate the Dill C rate constant for a photoacid generator in a film containing a polymer, photoacid generator, and base quencher. This three component formulation more closely resembles the composition of commercial chemically amplified photoresists. It is shown that by using a data normalization approach, the IDE data can be successfully analyzed to compute accurate Dill C values for a PAG in the presence of base quencher and to estimate the concentration of base quencher in the film. The technique also thus allows for measurement of the impact of the presence of base quencher on the photoreaction rate constant of the photoacid generator.

Paper Details

Date Published: 4 May 2005
PDF: 12 pages
Proc. SPIE 5753, Advances in Resist Technology and Processing XXII, (4 May 2005); doi: 10.1117/12.607437
Show Author Affiliations
Cody Berger, Georgia Institute of Technology (United States)
Clifford L. Henderson, Georgia Institute of Technology (United States)

Published in SPIE Proceedings Vol. 5753:
Advances in Resist Technology and Processing XXII
John L. Sturtevant, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?