Share Email Print

Proceedings Paper

Microfluidic device with integrated temperature control unit for hydrogel actuation
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A microfluidic device, with a temperature control unit to study the behaviour of temperature sensitive hydrogel, has been designed, simulated and fabricated. The system consists of a PDMS (polydimethylsiloxane) microchannel sealed on a Pyrex substrate with microfabricated titanium electrodes for heating and sensing elements. A thermal insulating layer in-between the electrodes and the substrate was found to increase the heat transfer to the fluid and decrease the lateral heat propagation. The temperature profile and the heat distribution in the system were investigated using the commercial software package CFD-ACE+. The device was electrically and thermally characterised. Such a system, biocompatible and re-usable, could be a potential candidate for biomedical applications such as DNA amplification and protein synthesis.

Paper Details

Date Published: 16 February 2005
PDF: 9 pages
Proc. SPIE 5651, Biomedical Applications of Micro- and Nanoengineering II, (16 February 2005); doi: 10.1117/12.606832
Show Author Affiliations
Damien Pachoud, RMIT Univ. (Australia)
Arnan Mitchell, RMIT Univ. (Australia)
Gary Rosengarten, RMIT Univ. (Australia)
Univ. of Melbourne (Australia)

Published in SPIE Proceedings Vol. 5651:
Biomedical Applications of Micro- and Nanoengineering II
Dan V. Nicolau, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?