Share Email Print

Proceedings Paper

Cubic convolution for super-resolution from microscanned images
Author(s): Jiazheng Shi; Stephen E. Reichenbach; James D. Howe
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper presents a computationally efficient method for super-resolution reconstruction and restoration from microscanned images. Microscanning creates multiple low-resolution images with slightly varying sample-scene phase shifts. Microscanning can be implemented with a physical microscanner built into specialized imaging systems or by simply panning and/or tilting traditional imaging systems to acquire a temporal sequence of images. Digital processing can combine the low-resolution images to produce an image with higher pixel resolution (i.e., super-resolution) and higher fidelity. The cubic convolution method developed in this paper employs one-pass, small-kernel convolution to perform reconstruction (increasing resolution) and restoration (improving fidelity). The approach is based on an end-to-end, continuous-discrete-continuous model of the microscanning imaging process. The derivation yields a parametric form that can be optimized for the characteristics of the scene and the imaging system. Because cubic convolution is constrained to a small spatial kernel, the approach is efficient and is amenable to adaptive processing and to parallel implementation. Experimental results with simulated imaging and with real microscanned images indicate that the cubic convolution method efficiently and effectively increases resolution and fidelity for significantly improved image quality.

Paper Details

Date Published: 25 May 2005
PDF: 12 pages
Proc. SPIE 5817, Visual Information Processing XIV, (25 May 2005); doi: 10.1117/12.606625
Show Author Affiliations
Jiazheng Shi, Univ. of Nebraska/Lincoln (United States)
Stephen E. Reichenbach, Univ. of Nebraska/Lincoln (United States)
James D. Howe, U.S. Army Night Vision and Electronic Sensors Directorate (United States)

Published in SPIE Proceedings Vol. 5817:
Visual Information Processing XIV
Zia-ur Rahman; Robert A. Schowengerdt; Stephen E. Reichenbach, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?