Share Email Print

Proceedings Paper

Development and testing for physical security robots
Author(s): Daniel M. Carroll; Chinh Nguyen; H. R. Everett; Brian Frederick
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Mobile Detection Assessment Response System (MDARS) provides physical security for Department of Defense bases and depots using autonomous unmanned ground vehicles (UGVs) to patrol the site while operating payloads for intruder detection and assessment, barrier assessment, and product assessment. MDARS is in the System Development and Demonstration acquisition phase and is currently undergoing developmental testing including an Early User Appraisal (EUA) at the Hawthorne Army Depot, Nevada-the world's largest army depot. The Multiple Resource Host Architecture (MRHA) allows the human guard force to command and control several MDARS platforms simultaneously. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. The MRHA also interfaces to remote resources to automate legacy physical devices such as fence gate controls, garage doors, and remote power on/off capability for the MDARS patrol units. This paper provides an overview and history of the MDARS program and control station software with details on the installation and operation at Hawthorne Army Depot, including discussions on scenarios for EUA excursions. Special attention is given to the MDARS technical development strategy for spiral evolutions.

Paper Details

Date Published: 27 May 2005
PDF: 10 pages
Proc. SPIE 5804, Unmanned Ground Vehicle Technology VII, (27 May 2005); doi: 10.1117/12.606235
Show Author Affiliations
Daniel M. Carroll, SPAWAR Systems Ctr., San Diego (United States)
Chinh Nguyen, SPAWAR Systems Ctr., San Diego (United States)
H. R. Everett, SPAWAR Systems Ctr., San Diego (United States)
Brian Frederick, General Dynamics Robotic Systems (United States)

Published in SPIE Proceedings Vol. 5804:
Unmanned Ground Vehicle Technology VII
Grant R. Gerhart; Charles M. Shoemaker; Douglas W. Gage, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?