Share Email Print

Proceedings Paper

Immune systems are not just for making you feel better: they are for controlling autonomous robots
Author(s): Mark Rosenblum
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The typical algorithm for robot autonomous navigation in off-road complex environments involves building a 3D map of the robot's surrounding environment using a 3D sensing modality such as stereo vision or active laser scanning, and generating an instantaneous plan to navigate around hazards. Although there has been steady progress using these methods, these systems suffer from several limitations that cannot be overcome with 3D sensing and planning alone. Geometric sensing alone has no ability to distinguish between compressible and non-compressible materials. As a result, these systems have difficulty in heavily vegetated environments and require sensitivity adjustments across different terrain types. On the planning side, these systems have no ability to learn from their mistakes and avoid problematic environmental situations on subsequent encounters. We have implemented an adaptive terrain classification system based on the Artificial Immune System (AIS) computational model, which is loosely based on the biological immune system, that combines various forms of imaging sensor inputs to produce a "feature labeled" image of the scene categorizing areas as benign or detrimental for autonomous robot navigation. Because of the qualities of the AIS computation model, the resulting system will be able to learn and adapt on its own through interaction with the environment by modifying its interpretation of the sensor data. The feature labeled results from the AIS analysis are inserted into a map and can then be used by a planner to generate a safe route to a goal point. The coupling of diverse visual cues with the malleable AIS computational model will lead to autonomous robotic ground vehicles that require less human intervention for deployment in novel environments and more robust operation as a result of the system's ability to improve its performance through interaction with the environment.

Paper Details

Date Published: 27 May 2005
PDF: 12 pages
Proc. SPIE 5804, Unmanned Ground Vehicle Technology VII, (27 May 2005); doi: 10.1117/12.605468
Show Author Affiliations
Mark Rosenblum, Perceptek, Inc. (United States)

Published in SPIE Proceedings Vol. 5804:
Unmanned Ground Vehicle Technology VII
Grant R. Gerhart; Charles M. Shoemaker; Douglas W. Gage, Editor(s)

© SPIE. Terms of Use
Back to Top