Share Email Print
cover

Proceedings Paper

Moving speed of linear acoustic landmine detection systems
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In recent years, the acoustic technology for landmine detection has demonstrated success in field testing. Acoustic-to-seismic responses of buried landmines are exploited for locating the targets. Field experiments have demonstrated that different burial conditions and different landmines show different linear frequency responses. Therefore, the landmine detection system uses broad-band excitations. Until now, the research work for acoustic landmine detection has primarily focused on demonstrating a high probability of detection and low false alarm rate through systematic field experiments, such as blind field tests, especially for anti-tank mines. However, the speed of detection has not yet been shown to meet operational requirements. In designing a moving platform, one must know how fast an acoustic detector can acquire high-quality data, and what factors limit increased moving speed. Based upon field test results, this paper investigates the relationship between the bandwidth of the pseudo-random excitation, frequency resolution of linear response measurements, speckle noise, and reliable moving speeds of acoustic/seismic sensors.

Paper Details

Date Published: 10 June 2005
PDF: 8 pages
Proc. SPIE 5794, Detection and Remediation Technologies for Mines and Minelike Targets X, (10 June 2005); doi: 10.1117/12.604381
Show Author Affiliations
Ning Xiang, Rensselaer Polytechnic Institute (United States)
James M. Sabatier, Univ. of Mississippi (United States)


Published in SPIE Proceedings Vol. 5794:
Detection and Remediation Technologies for Mines and Minelike Targets X
Russell S. Harmon; J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray