Share Email Print

Proceedings Paper

3D numerical simulation of the transport of chemical-signature-compounds from buried landmines
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The transport of the chemical signature compounds from buried landmines in a three-dimensional (3D) array has been numerically modeled using the finite-volume technique. Compounds such as trinitrotoluene, dinitrotoluene, and their degradation products, are semi volatile and somewhat soluble in water. Furthermore, they can strongly adsorb to the soil and undergo chemical and biological degradation. Consequently, the spatial and temporal concentration distributions of such chemicals depend on the mobility of the water and gaseous phases, their molecular and mechanical diffusion, adsorption characteristics, soil water content, compaction, and environmental factors. A 3D framework is required since two-dimensional (2D) symmetry may easily fade due to terrain topography: non-flat surfaces, soil heterogeneity, or underground fractures. The spatial and temporal distribution of the chemical-signature-compounds, in an inclined grid has been obtained. The fact that the chemicals may migrate horizontally, giving higher surface concentrations at positions not directly on top of the objects, emphasizes the need for understanding the transport mechanism when a chemical detector is used. Deformation in the concentration contours after rainfall is observed in the inclined surface and is attributed to both: the advective flux, and to the water flux at the surface caused by the slope. The analysis of the displacements in the position of the maximum concentrations at the surface, respect to the actual location of the mine, in an inclined system, is presented.

Paper Details

Date Published: 10 June 2005
PDF: 7 pages
Proc. SPIE 5794, Detection and Remediation Technologies for Mines and Minelike Targets X, (10 June 2005); doi: 10.1117/12.603453
Show Author Affiliations
Maik Irrazabal, Univ. of Puerto Rico-Mayaguez (United States)
Ernesto Borrero, Univ. of Puerto Rico-Mayaguez (United States)
Julio G. Briano, Univ. of Puerto Rico-Mayaguez (United States)
Miguel Castro, Univ. of Puerto Rico-Mayaguez (United States)
Samuel P. Hernandez, Univ. of Puerto Rico-Mayaguez (United States)

Published in SPIE Proceedings Vol. 5794:
Detection and Remediation Technologies for Mines and Minelike Targets X
Russell S. Harmon; J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?