Share Email Print
cover

Proceedings Paper

Predictive fuzzy reasoning method for time series stock market data mining
Author(s): Rashid Hafeez Khokhar; Mohd Noor Md Sap
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Data mining is able to uncover hidden patterns and predict future trends and behaviors in financial markets. In this research we approach quantitative time series stock selection as a data mining problem. We present another modification of extraction of weighted fuzzy production rules (WFPRs) from fuzzy decision tree by using proposed similarity-based fuzzy reasoning method called predictive reasoning (PR) method. In proposed predictive reasoning method weight parameter can be assigned to each proposition in the antecedent of a fuzzy production rule (FPR) and certainty factor (CF) to each rule. Certainty factors are calculated by using some important variables like effect of other companies, effect of other local stock market, effect of overall world situation, and effect of political situation from stock market. The predictive FDT has been tested using three data sets including KLSE, NYSE and LSE. The experimental results show that WFPRs rules have high learning accuracy and also better predictive accuracy of stock market time series data.

Paper Details

Date Published: 28 March 2005
PDF: 12 pages
Proc. SPIE 5812, Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005, (28 March 2005); doi: 10.1117/12.603089
Show Author Affiliations
Rashid Hafeez Khokhar, Univ. of Technology of Malaysia (Malaysia)
Mohd Noor Md Sap, Univ. of Technology of Malaysia (Malaysia)


Published in SPIE Proceedings Vol. 5812:
Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005
Belur V. Dasarathy, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray