Share Email Print

Proceedings Paper

Image normalization using the serpentine forward-backward filter: application to high-resolution sonar imagery and its impact on mine detection and classification
Author(s): Gerald J. Dobeck
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In high-resolution sonar imagery, large variations in image background can make it difficult to reliably find targets. These variations result from irregular illumination of the sea floor, which is caused by sonar platform motion. Contributing to this problem is the fact that the spatial frequencies of the varying background can be similar to those of the target. Consequently, image-processing methods that attempt to segment image regions associated with target highlight (or shadow), are often fooled by bright (or dark) target-size patches of background. This typically results in an increase of the number of false alarms. This paper describes two image normalization methods: the Cross-Range Forward-Backward filter and the Serpentine Forward-Backward filter. Results are presented that show the impact of the image normalization on reducing false alarms.

Paper Details

Date Published: 10 June 2005
PDF: 11 pages
Proc. SPIE 5794, Detection and Remediation Technologies for Mines and Minelike Targets X, (10 June 2005); doi: 10.1117/12.602878
Show Author Affiliations
Gerald J. Dobeck, Naval Surface Warfare Ctr./Panama City (United States)

Published in SPIE Proceedings Vol. 5794:
Detection and Remediation Technologies for Mines and Minelike Targets X
Russell S. Harmon; J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?