Share Email Print

Proceedings Paper

Quasi-static and dynamic inflation of a dielectric elastomer membrane actuator
Author(s): Nakhiah Goulbourne; Mary Frecker; Eric Mockensturm
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper presents quasi-static and dynamic results for dielectric elastomer actuators subject to a uniform mechanical pressure and an applied voltage. The numerical quasi-static results are compared to experimental data for actuators made from 3M VHB material. It is shown that the theoretical model for the active inflation of hyperelastic membranes is sensitive to the explicit form of the assumed strain energy function. The optimal constants of 2-Term and 3-Term Ogden models are determined from uniaxial and biaxial stress experimental data. Using the best overall values for the material constants, the electro-elastic model is used to predict the voltage-dependent behavior for the inflation of dielectric elastomer actuators. The correlation between the numerical results and the experimental data is good. In previous work, inertial effects have been neglected and a quasi-static approach employed. The method is presently expanded to include the dynamic response of dielectric elastomer actuators. In this case inertial effects become increasingly important as different equilibria modes are obtained during dynamic operation. The results show the potential for voltage-controlled bifurcations during the inflation of spherical dielectric elastomer actuators.

Paper Details

Date Published: 6 May 2005
PDF: 12 pages
Proc. SPIE 5759, Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), (6 May 2005); doi: 10.1117/12.600346
Show Author Affiliations
Nakhiah Goulbourne, The Pennsylvania State Univ. (United States)
Mary Frecker, The Pennsylvania State Univ. (United States)
Eric Mockensturm, The Pennsylvania State Univ. (United States)

Published in SPIE Proceedings Vol. 5759:
Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top