Share Email Print

Proceedings Paper

High-contrast ratio and long lifetime polymer electrochromic devices (ECDs)
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The preparation and characterization of a type of ECD which was based on a cathodic EC polymer film, Poly [3, 3-dimethyl-3, 4-dihydro-2H-thieno [3, 4-b][1, 4] dioxepine] (PProDOT-Me2) is reported. A typical device was constructed by sandwiching a gel electrolyte between a PProDOT-Me2 EC film deposited on Indium Tin oxide (ITO) coated glass and a counter electrode which was also ITO glass coated by a Vanadium oxide (V2O5) thin film. The ECD has been characterized. Device contrast ratio, measured as Ε%T, was equal to 60%, and ranged from 2% to 62% between the colored and bleached state measured at 580 nm. A lifetime of over 100,000 cycles between the fully oxidized and fully reduced state has been achieved with only 6% change in the transmittance. The switching speed of a 2.5cm x 2.5cm ECD could be reached in 1 second between the bleached and colored state. The device also has a long open circuit memory. It can remain in the bleached or colored state without being energized for 30 days, and the change in transmittance is less than 6% in colored state. The cyclic voltammetry method was used to detect the moisture content in the gel electrolyte. ECDs of various dimensions were also prepared, 2.5cm x 2.5cm, 7.5cm x 7.5cm, 15cm x 15cm and 30cm x 30cm. The largest scale EC polymer device achieved is 30cm x 30cm. Low sheet resistance ITO glass and a thin-film silver deposition frame were applied to overcome the electric potential drop across the ITO glass surface.

Paper Details

Date Published: 6 May 2005
PDF: 8 pages
Proc. SPIE 5759, Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), (6 May 2005); doi: 10.1117/12.598936
Show Author Affiliations
Dai Ning, Univ. of Washington (United States)
Chunye Xu, Univ. of Washington (United States)
Lu Liu, Univ. of Washington (United States)
Calen Kaneko, Univ. of Washington (United States)
Minoru Taya, Univ. of Washington (United States)

Published in SPIE Proceedings Vol. 5759:
Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?