Share Email Print

Proceedings Paper

Double-microcantilever design for surface stress measurement in biosensors
Author(s): T. I. Yin; S. M. Yang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Microcantilever sensor with embedded piezoresistor has been proposed to measure the surface stress change from biochemical reaction. However, the sensor performance is adversely influenced by the piezoresistive thermal stress and biaxial surface stress loading. A mechanics model of piezoresistive microcantilever subject to surface stress loading is developed in this paper. A double-microcantilever design composed of the top immobilized microcantilever and the bottom sensing microcantilever is also proposed such that the surface stress loading can be converted to a concentrated force loading. The effect of biaxial surface stress can thus be limited to the immobilized microcantilever with the uniaxial strain in the sensing microcantilever. Analyses show that the surface stress sensitivity can be increased by high length ratio and lower thickness ratio of the two cantilevers. More than two orders of magnitude in measurement sensitivity can be achieved and the induced thermal noise can be minimized.

Paper Details

Date Published: 16 May 2005
PDF: 12 pages
Proc. SPIE 5763, Smart Structures and Materials 2005: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, (16 May 2005); doi: 10.1117/12.598651
Show Author Affiliations
T. I. Yin, National Cheng Kung Univ. (Taiwan)
S. M. Yang, National Cheng Kung Univ. (Taiwan)

Published in SPIE Proceedings Vol. 5763:
Smart Structures and Materials 2005: Smart Electronics, MEMS, BioMEMS, and Nanotechnology
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?