Share Email Print

Proceedings Paper

Damage growth detection of composite laminate using embedded FBG sensor/PZT actuator hybrid system
Author(s): Toshimichi Ogisu; Masakazu Shimanuki; Satoshi Kiyoshima; Yoji Okabe; Nobuo Takeda
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper presents a part of the study conducted for developing a damage diagnostic system for an advanced composite material that can be utilized in next-generation aircraft structure. The authors have been working on a detection of elastic wave which can be launched from the PZT actuators, using small- and normal-diameter FBG optical fiber sensors that are bonded to the surface of the CFRP laminate under different conditions. Based on the results, it was verified that it is possible to achieve a high-accuracy detection of elastic wave by using FBG sensors bonded to the surface of the CFRP laminate. It was also verified that the damages generated on the inside of the composite material may be detected by the waveform analysis of the received elastic wave. In this study, the authors succeeded in the embedment of small-diameter FBG optical fiber sensors into the bonding surface of the double-lap type coupon specimen, which simulates the bonding structure of the CFRP composite structure. In this study, we also clarified several issues pertaining to the conditions, methods, and techniques involved in fiber embedding. An optical loss was observed during the embedment process, which may result in the loss of both accuracy and reliability. Based on these observations, the authors developed embedding techniques for optical fiber sensors that can reduce this optical loss. Additionally, the possibility of detecting an elastic wave, which was launched from the PZT actuators bonded to the surface of the coupon and directed to the host material, was verified using double-lap type coupon specimen having embedded small-diameter FBG optical fiber sensors at the bonding surface. Therefore, this specimen has provided an artificial defect that simulates the delamination generated at the bonding interface. Based on the measurements of the elastic wave, it was verified that the change in the elastic wave depends on the damage length, which is caused by the artificial defect. Moreover, based on the analysis of the received elastic wave, the possibility of damage detection was confirmed. The successful development of this damage monitoring system would ease the implementation of structural health monitoring system in aircraft structures in the near future.

Paper Details

Date Published: 16 May 2005
PDF: 12 pages
Proc. SPIE 5758, Smart Structures and Materials 2005: Smart Sensor Technology and Measurement Systems, (16 May 2005); doi: 10.1117/12.598085
Show Author Affiliations
Toshimichi Ogisu, Fuji Heavy Industries, Ltd. (Japan)
Masakazu Shimanuki, Fuji Heavy Industries, Ltd. (Japan)
Satoshi Kiyoshima, Fuji Heavy Industries, Ltd. (Japan)
Yoji Okabe, The Univ. of Tokyo (Japan)
Nobuo Takeda, The Univ. of Tokyo (Japan)

Published in SPIE Proceedings Vol. 5758:
Smart Structures and Materials 2005: Smart Sensor Technology and Measurement Systems
Eric Udd; Daniele Inaudi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?