Share Email Print
cover

Proceedings Paper

Evaluation of internal noise methods for Hotelling observers
Author(s): Yani Zhang; Binh T. Pham; Miguel P. Eckstein
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Including internal noise in computer model observers to degrade model observer performance to human levels is a common method to allow for quantitatively comparisons of human and model performance. In this paper, we studied two different types of methods for injecting internal noise to Hotelling model observers. The first method adds internal noise to the output of the individual channels: a) Independent non-uniform channel noise, b) Independent uniform channel noise. The second method adds internal noise to the decision variable arising from the combination of channel responses: a) internal noise standard deviation proportional to decision variable's standard deviation due to the external noise, b) internal noise standard deviation proportional to decision variable's variance caused by the external noise. We tested the square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO). The studied task was detection of a filling defect of varying size/shape in one of four simulated arterial segment locations with real x-ray angiography backgrounds. Results show that the internal noise method that leads to the best prediction of human performance differs across the studied models observers. The CHO model best predicts human observer performance with the channel internal noise. The HO and LGHO best predict human observer performance with the decision variable internal noise. These results might help explain why previous studies have found different results on the ability of each Hotelling model to predict human performance. Finally, the present results might guide researchers with the choice of method to include internal noise into their Hotelling models.

Paper Details

Date Published: 6 April 2005
PDF: 12 pages
Proc. SPIE 5749, Medical Imaging 2005: Image Perception, Observer Performance, and Technology Assessment, (6 April 2005); doi: 10.1117/12.595861
Show Author Affiliations
Yani Zhang, Univ. of California/Santa Barbara (United States)
Binh T. Pham, Univ. of California/Santa Barbara (United States)
Miguel P. Eckstein, Univ. of California/Santa Barbara (United States)


Published in SPIE Proceedings Vol. 5749:
Medical Imaging 2005: Image Perception, Observer Performance, and Technology Assessment
Miguel P. Eckstein; Yulei Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top