Share Email Print

Proceedings Paper

Human motion analysis with detection of sub-part deformations
Author(s): Juhui Wang; Guy Lorette; Patrick Bouthemy
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

One essential constraint used in 3-D motion estimation from optical projections is the rigidity assumption. Because of muscle deformations in human motion, this rigidity requirement is often violated for some regions on the human body. Global methods usually fail to bring stable solutions. This paper presents a model-based approach to combating the effect of muscle deformations in human motion analysis. The approach developed is based on two main stages. In the first stage, the human body is partitioned into different areas, where each area is consistent with a general motion model (not necessarily corresponding to a physical existing motion pattern). In the second stage, the regions are eliminated under the hypothesis that they are not induced by a specific human motion pattern. Each hypothesis is generated by making use of specific knowledge about human motion. A global method is used to estimate the 3-D motion parameters in basis of valid segments. Experiments based on a cycling motion sequence are presented.

Paper Details

Date Published: 26 June 1992
PDF: 12 pages
Proc. SPIE 1660, Biomedical Image Processing and Three-Dimensional Microscopy, (26 June 1992); doi: 10.1117/12.59562
Show Author Affiliations
Juhui Wang, IRISA/INRIA (France)
Guy Lorette, IRISA/Univ. de Rennes I (France)
Patrick Bouthemy, IRISA/INRIA (France)

Published in SPIE Proceedings Vol. 1660:
Biomedical Image Processing and Three-Dimensional Microscopy
Raj S. Acharya; Carol J. Cogswell; Dmitry B. Goldgof, Editor(s)

© SPIE. Terms of Use
Back to Top