Share Email Print

Proceedings Paper

High-performance GaInNAsSb/GaAs lasers at 1.5 um
Author(s): Lynford L. Goddard; Seth R. Bank; Mark A. Wistey; Homan B. Yuen; James S. Harris Jr.
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We achieved 1.5-um CW SQW GaInNAsSb lasers with GaNAs barriers grown by MBE on GaAs substrates with typical room temperature threshold densities below 600A/cm2, external quantum efficiencies above 50%, and output powers exceeding 200mW from both facets for 20x1222um devices tested epitaxial-side up. In pulsed mode, 450A/cm2, 50%, and 1100mW were realized. Longer devices yielded over 425mW of total CW power and thresholds below 450A/cm2. These results are comparable to high quality GaInNAs/GaAs lasers at 1.3um. Z-parameter measurements revealed that these improvements in the performance metrics of approximately 40-60% over previous results are primarily due to reduced monomolecular recombination. The large differential gain of GaInNAsSb/GaNAs/GaAs lasers at 1.5um of approximately 1.2x10-15cm2 was mostly squandered in previous devices due to large quantities of monomolecular recombination. The characteristic temperatures for threshold current, T0, and for efficiency, T1, were 66K and 132K, respectively. These reduced values, compared to prior measurements of 106K and 208K, respectively, indicate carrier leakage. Since monomolecular recombination is temperature insensitive, the temperature stability of device operation was adversely affected.

Paper Details

Date Published: 1 April 2005
PDF: 12 pages
Proc. SPIE 5738, Novel In-Plane Semiconductor Lasers IV, (1 April 2005); doi: 10.1117/12.591447
Show Author Affiliations
Lynford L. Goddard, Stanford Univ. (United States)
Seth R. Bank, Stanford Univ. (United States)
Mark A. Wistey, Stanford Univ. (United States)
Homan B. Yuen, Stanford Univ. (United States)
James S. Harris Jr., Stanford Univ. (United States)

Published in SPIE Proceedings Vol. 5738:
Novel In-Plane Semiconductor Lasers IV
Carmen Mermelstein; David P. Bour, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?